The Resolution of Chlorine and Bromine Isotope Shifts in the ³¹P Nuclear Magnetic Resonance Spectra of PCI₃ and PBr₃ By Malcolm J. Buckingham and Geoffrey E. Hawkes, Department of Chemistry, Queen Mary College, Mile End Road, London E1 4NS Ismail M. Ismail and Peter J. Sadler,* Department of Chemistry, Birkbeck College, Malet Street, London WC1E 7HX The isotopomers of PCl₃ and PBr₃ are well resolved in their ³¹P n.m.r. spectra at very high field (9.4 T) and low temperature (*ca.* 200 K). The isotope shifts of 0.019 (³⁵Cl/³⁷Cl) and 0.006 p.p.m. (⁷⁹Br/⁸¹Br) fall within the predicted ranges. The potential for the observation of isotope shifts in n.m.r. spectra has recently increased with the availability of very high field spectrometers. These shifts are frequently very small but useful both in peak assignment ¹ and in chemical and biochemical mechanistic studies:² We have recently reported halogen isotope shifts in ¹⁹⁵Pt n.m.r. spectra ³ and now report the first example of halogen isotope shifts in ³¹P n.m.r. ## **EXPERIMENTAL** Phosphorus tribromide and phosphorus trichloride were neat liquids as supplied by the Aldrich Chemical Co. Ltd., except that $[^3H_6]$ acetone was added (5% v/v) to provide the n.m.r. lock. Phosphorus-31 n.m.r. spectra (162 MHz) were recorded using sample tubes (10 mm) on the Bruker WH-400 spectrometer of the U.L.I.R.S. n.m.r. service at Queen Mary College. ## RESULTS AND DISCUSSION The spectra of both PCl₃ and PBr₃ at ambient temperature appeared to be singlets, but on lowering the temperature well resolved fine structure appeared for both PCl₃ (at ca. 173 K) and PBr₃ (at 203 K) (see Figure). The intense peaks for PCl₃ are equally spaced by 3.1 Hz (0.019 p.p.m.) and the four for PBr₃ equally spaced by 0.95 Hz (0.006 p.p.m.), resolution enhancement using the Gaussian multiplication technique being essential to reveal the latter. We attribute these splittings to chlorine and bromine isotope shifts. The expected isotopomer ratios for PCl₃ are 1.0: 0.99: 0.33: 0.036 for P³⁵Cl₃: P³⁵Cl₂³⁷Cl: P³⁵Cl³⁷Cl₂: P³⁷Cl₃ respectively (natural abundances: ³⁵Cl, 74.5; ³⁷Cl, 24.6%) which are close to the observed peak intensities (1.0, 0.80, 0.23, 0.036). For PBr₃ the calculated ratio of P⁷⁹Br₃: P⁷⁹Br₂⁸¹Br: P⁷⁹Br⁸¹Br₂: P⁸¹Br₃ are 0.34: 1.0: 0.97: 0.32 respectively (natural abundances: ⁷⁹Br, 50.6; ⁸¹Br, 49.4%), and although the relative intensities of the observed four peaks are severely distorted by the use of resolution enhancement they do confirm that isotopomers are being observed (see Figure). In common with other isotope shifts the heavier isotopomers resonate at lower frequency. Since the origin of the isotope shift lies in small geometrical (vibrational) differences the shifts decrease in magnitude as the element increases in atomic weight (i.e., Cl > Br); typical values for ¹H/²H and ¹⁶O/¹⁸O isotope shifts in ³¹P n.m.r. spectra are 0.8 and 0.02 p.p.m. respectively.^{4,5} In addition isotope shifts generally increase with increase in chemical shift range of the nucleus observed. Thus the analogous (³⁵Cl/³⁷Cl) one-bond isotope shifts for ¹³C 162-MHz 31P n.m.r. spectra of (a) PCl₃ (+5% [2H₈]acetone) at 173 K and (b) PBr₂ (+5% [2H₈]acetone) at 203 K are 0.004 1 and for 195Pt are 0.167 p.p.m.2 (the chemical shift range for ¹⁹⁵Pt being larger than for ¹³C). The advantage of a very high field spectrometer for observing these shifts is clear and they can be used as a further assignment aid for resonances. Our success in resolving isotope shifts of PCl₃ and PBr₃ only at low temperature may be attributed to the increase in ³¹P spin-spin relaxation times (and therefore decrease in linewidths) of these molecules with decrease in temperature. This is because the relaxation mechanism is dominated by spin rotation, the only relaxation rate which normally behaves in this way.6 We acknowledge support from the University of London Intercollegiate Research Service and the S.E.R.C. [1/1773 Received, 16th November, 1981] ## REFERENCES - ¹ W. Buchner and D. Scheutzow, Org. Magn. Reson., 1975, 7, 615. - 7, 615. ² M. Cohn and B. D. N. Rao, *Bull. Magn. Res.*, 1979, **1**, 38. ³ I. M. Ismail, S. J. S. Derrison, and P. J. Sadler, *J. Chem. Soc.*, *Chem. Commun.*, 1980, 1175. ⁴ A. A. Borisenko, N. M. Sergeyev, and Y. A. Ustynyuk, *Mol. Phys.*, 1971, 22, 715. ⁵ G. Lowe and B. S. Sproat, *J. Chem. Soc.*, *Chem. Commun.*, 1070, 1685. - 1978, 565. K. T. Gillen, J. Chem. Phys., 1972, 56, 1573.